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ABSTRACT

Measurements of exposure rates using thermoluminescent dosimeters
placed within residences in the Oak Ridge/Knoxville area are presented.
The objective of this investigation was to determine the radiation
component acquired by Oak Ridge National Laboratory employee personnel
dosimeter-security badges during residential badge storage and to develop
a model to predict the radiation exposure rate in Oak Ridge/Knoxville-
area homes. The exposure rates varied according to building material
used and geographic location. Exposure rates were higher in the fall
and lower in the spring; stone residences had a higher average dose
equivalent rate than residences made of wood. An average yearly expo-
sure rate was determined to be 78 millirems per year for the Oak Ridge-
area homes. This value can be compared to the natural background radia-
tion dose equivalent rate in the United States of 80 to 200 millirems

per year.

{
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1. INTRODUCTION

The largest source of radiation exposure to man is the natural
radiation in the environment. Man is exposed to natural radiation in
varying degrees; this exposure depends on such factors as geographic
location, building construction materials, etc. Radiation contributions
from cosmic rays, radionuclides of terrestrial origin, and those radio-
nuclides present within the body account for most of the natural radia-
tion exposure. - The average annual dose equivalent from natural background
radiation to people living in the United States is comnsidered to be
between 80 and 200 millirems per year.! This dose equivalent may be
compared to a genetically significant dose equivalent average of
55 millirems per year received from x rays utilized for medical diagnostic
purposes.? The combination of other man-made sources of radiation
(e.g., nuclear weapons fallout, nuclear reactors) contribute less than
5 millirems per year.?2

Since the beginning of the Neolithic Age (approximately 10,000 B.C.),
the amount of natural radiation has remained relatively constant. It
was noted by Black3 that the most recent reversal of the earth's magnetic
field (estimated to have occurred about 700,000 years ago) may have
caused a 107 increase in the natural radiation at the earth's equatorial
regions. This increase was attributed to an increase in cosmic rays and
had an estimated duration of approximately 1000 years. With the excep-
tion of short-term variations in the cosmic-ray flux density caused
primarily by solar flares, no significant changes in the natural radia-
tion environment have been noted in the literature. The various components
of the natural radiation background are described in the remainder of

this section.

1.1 Cosmic Radiation

Cosmic rays are the natural radiation contribution from above the
surface of the earth. At sea level, they consist of an ionizing component
(p~mesons and electrons), a neutron component, and a minor contribution

from electromagnetic radiation. The p-meson component accounts for

Ty e g

o e LN A AR ¢ e i e g Al - e S uinsenn 4 5 gae 4 TIRLSTS LAY ¢ WY e T R — ey PRt AR < ErCaransie

L



approximately 70% of the dose from cosmic radiation and is the most signifi-
cant component of population exposure.

Galactic radiation from outside our solar system and solar radiation
from phenomena on the sun are the primary sources of cosmic rays. These
two types of cosmic radiation contribute high~energy particles thought
to exceed 1 x 10!0 GeV in energy, with an average energy flux density of
2 x 103 MeV cm™2 sec™! arriving at the earth's upper atmosphere.“

Galactic radiation is estimated to be 75 to 89% protomns, 10 to 18%
helium nuclei and 1 to 7% nuclei with an atomic number greater than 3;
solar radiation consists primarily of protons and helium nuclei.ls5,6

The average dose equivalent caused by cosmic radiation in the
United States is 40 millirems per year; it is approximately 45 millirems
per year in Tennessee. Cosmic radiation fluctuations on the earth can be
attributed to variations in altitude and latitude. The latitude effect
is a phenomenon that causes a 127% increase in cosmic ray intensity at
the poles (relative to the equator).’ The whole-body dose equivalent
rates at sea level from Alaska to Florida range from 45 to 50 millirems
per year.® Estimates of the neutron component are more difficult because
of uncertainties in the spectral quality of the neutron flux density.
However, at sea level in the middle latitudes, the neutron dose equivalent

rate is considered to be about 7 millirems per person—year.9

1.2 Terrestrial Radiation

A significant portion of the background radiation exposure is caused
by the naturally occurring radionuclides in the earth. The major
radionuclides of significance to man's terrestrial gamma radiation dose
are *OK and the nuclides in the decay chains of 238U and 232Th. Other
additional nuclides are present in the rocks and soil but are considered
insignificant because of their relatively low concentrations.l0

At the surface of the earth, the neutron component of cosmic rays
via neutron capture results in the production of additional radionuclides;
1%¢ and 3H are some examples of these interactions. The dose equivalent

from this process is considered insignificant.



Terrestrial radiation varies as a function of geographic location.
The highest terrestrial gamma radiation values have been observed in the
vicinity of acidic rocks (e.g., granite). Dose rates in monazite areas
(e.g., sands on certain beaches of Rio de Janeiro, Brazil) have been
reported to be as high as 1300 millirems per year.11 Principle con-
stituents in these areas are primarily radionuclides from the 232Th
decay series. Table 1.1 gives exposure values of background radiation for

specific locations throughout the United States.!

1.2.1 Radon daughter products in natural terrestrial radiation

Variability in the natural aboveground radiation level is primarily
caused by the concentration of radon daughters in the atmosphere. A
daughter product of the 238y decay series, 222Rn (Tl/z = 3.8 d), and
a daughter product of the 232Th decay series, 220Rrn (T1/2 = 54.4 sec),
contribute a few millirems per year to the dose equivalent rate.l2
Both 222Rn and 220Rn have short-lived daughter nuclides that become
attached to particulates in the air, which increases the potential for
their inhalation.

Atmospheric temperature inversion, low barometric pressure, and low
soil moisture increase emanation of radon from the ground, resulting in
high concentrations of radon daughters in the air.l3 Beck, et al.lh
indicated that the %0k exposure rate decreases 30% when the soil water
increases from 0 to 30%. This increase in moisture content effectively
increases the shielding capacity of the soil. It has also been shown
that reduced radon gas emanation from the soil occurs when the soil
moisture content increases. This increase in soil moisture decreases
the %0k exposure and either increases or leaves unchanged the 222Rn
content. Another parameter affecting the variability of radon emanation
from the ground is snow cover. Snow cover essentially provides entrap-~

ment of radon gas in the soil, consequently decreasing radiation exposure.l!S

1.2.2 Natural radiation exposure from building materials

The radiation exposure to man within a building is affected by the

composition of the building materials, the geometry of exposure, and the
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duration spent at each location. Other factors influencing the exposure
rate include the concentration of radionuclides present within the
building materials, the ventilation rate, and the type of surface on the
inner walls.

The average urbanite spends approximately 80% of his lifetime
indoors,1® where exposure to natural radiation consists primarily of
radon daughters emanating from building materials. This radiation
exposure has been shown to be substantially higher in buildings con-
structed of bricks, low-density concretes, granites, and calcined gypsum
materials!7>18 (Table 1.2).

Frame dwellings have relatively low indoor radiation levels; radia-
tion exposure within frame structures is 70 to 807% that of outdoor
values.l® 1In masonry buildings, indoor exposure is 80 to 1067 that of
outdoor radiation wvalues.

Meteorological parameters affecting the dose equivalent rate from
building materials have been studied extensively.!8 Barometric pressure,
soil temperature, wind speed, and relative humidity are among the meteo-
rological parameters that act simultaneously to control releases of
220Rn, 222pn, and their short-lived daughter products from building
materials. Steinh#uslerl® indicated that a seasonal effect occurred
varying the 222Rn, 21L*}?b, and 212pb levels from a brick control building.19
Strong inversion layers during the winter months caused an enrichment of
radionuclides in the lower atmosphere corresponding to maximum levels in
the winter, while minimum values were detected in May.

Another minor contribution to the dose received by man in buildings
can be attributed to 222Rn in natural gas. In rooms containing unvented
gas kitchen ranges and space heaters, tracheo-bronchial dose equivalents
were reported as 15 and 54 millirems per year, respectively.20? Other
reports on radon in natural gas suggest that exposure to the radon
component in natural gas can be considered to be negligible to the total

natural radiation dose.?l



Table 1.2. Naturally occurring radionuclide

concentration estimates of Ra, U, Th, and
K in building materials

(ppm)

Material

Radium Uranium Thorium Potassium

Clay bricks

Granite aggregate

Granite bricks

Cement ]

Limestone concrete
Sandstone concrete

Dry wallboard

Vermiculite (potassium mica)

Gypsum Type A (waste product
of super-phosphate
fertilizer)

Gypsum Type A (carbonatite
ores)

Gypsum Type B (natural
gypsum)

1.4
0.3
2.4
ND&
ND
ND
ND
2.5
21.3

3.2

0.6

9.6
4.5
19.0
3.4
2.3
0.8
1.0
0.3
10.7

1.2

11.2
3.2
20.5
5.4
2.1

2.1
3.0

4.3

5.9

1.9

2.1
2.0
3.5
0.8
0.3
1.3
0.3
4.6
0.2

0.5

aNot determined.

Sources: Adapted from E. I. Hamilton, "The Relative Radio-
activity of Building Materials," Am. Ind. Hyg. Assoc. J., June
1971; and National Council on Radiation Protection and Measure-
ments, Radiation Exposure from Consumer Products and Miscellan-
eous Sources, Report No. 56, 1977.




2. METHODS AND MATERIALS

2.1 Thermoluminescent Dosimeter (TLD) Description and
Grading Procedure

Two 0.32 x 0.32 x 0.089-cm LiF thermoluminescent dosimeters (TLDs)
(TLD-100, The Harshaw Chemical Co.) with a natural isotopic composition
of 7.5% ®Li and 92.5% 7Li were placed in a Lucite TLD ring holder and
then placed into polyethylene bottles containing 3 g of 6-16 mesh silica
gel desiccant (Fig. 2.1). These polyethylene bottles were distributed
to the homes of various ORNL employees in the East Tennessee area for
the study.

All TLDs were graded initially for their response per unit exposure
to a radium source. The grading procedure began by annealing the TLDs
for 30 min at 400°C and then heating them for 2 h at 100°C. They were
then exposed to a 102.67 mg radium source (in radioactive equilibrium)
encased in l-mm-thick Monel (alloy composition — 60% nickel, 337% Cu, 7%
iron with p = 8.9 g/cm3). This cylindrical source was 0.84 cm long with
a 0.07 cm diameter. This source was calibrated with an NBS source.

Exposure rate was calculated in millirems per hour by:

millir/h = XK

d2

where
M = absolute amount of radium (mega Bq)
S114 2
K = 8600 (milliR) (cm®) (correction factor for l-mm Monel encasement)
(h) (mega Bq)
d = distance from source (cm)

Each TLD was then irradiated in the Lucite TLD ring holder 13.7 cm from
the source for 78 sec to obtain an exposure of 100 millirems. The apparatus
for TLD source exposure has been previously described.?2 The Lucite TLD
ring holder (1 g/cm? thickness) afforded good geometry for exposure with

a minimum of scattering.



Fig. 2.1.
silica gel.

ORNL-PHOTO 2739-76
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Polyethylene bottle containing lucite TLD holder and
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After irradiation, the TLDs were oven-tempered at 80°C for 20 min
and then read in a TLD reader. Glow curves for the TLD-100s have been
previously reported.?3 The TLDs that showed similar response per unit

exposure to the radium source were then used for this study.

2.2 TLD Handling and Readout Procedure

Each TLD chip was handled carefully to decrease the probability of
damage and consequently to decrease change in TLD response. Control
TLDs were placed into a cylindrical lead encasement (4-in.-thick walls)
to minimize background radiation contributions. At the midpoint of each
three-month period, one set of control TLDs was irradiated with 100 milliR
from the described radium source and returned to the lead shielding.
These control TLDs, as well as the TLDs distributed to the houses, were
read the same day. The TLDs were read as soon as they were returned
from the houses to decrease the amount of storage time and consequent
fading.

All TLDs returned were pretreated before reading by oven-tempering
at 80°C for 20 min. The expgosure obtained from the home TLDs were

calculated as follows:

'R
(—§Y> (CF) (1000) = microR/h

h
where
_ . _ 100 milliR/h
CF = correction factor = y—arrg control TLD - background TLD ’
(milliR)
Rav = average of the two TLD readout values,
h = number of hours at location,
1000 = conversion factor to obtain microrems.
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2.3 Placement of TLDs

Eighty-four homes in the Oak Ridge/Knoxville area were used as TLD
placement locations for this study (Fig. 2.2). The TLDs were taken home
by volunteer Oak Ridge National Laboratory (ORNL) employees. These
employees were instructed to place the TLD where their personnel dosimeter
was placed after working hours. For a period of one year, each employee
brought the TLD to ORNL quarterly for prompt reading. A replacement TLD

was given to each participant.

Lo Sl ¢ abat 70 T T T T T T TSI S g T A T e AL




12

Oak Ridge area.

Fig. 2.2.



3. RESULTS AND DISCUSSIONS

Data were collected and evaluated from the residences of ORNL
employee-~volunteers on a quarter-to-quarter basis. Descriptive informa-
tion about each residence was obtained to correlate differences between
dosimeter values and possible source terms. Characterization of each
test home included principle building material, geographic location, and
insulation and storm window additions. The data generated by this
investigation '‘are presented in Appendix A. The TLDs were placed into
polyethylene bottles containing silica gel and located inside each test
home so that variations in TLD readings could be kept to a minimum.

TLD-100s were used because of their slow-fading characteristics.

3.1 General Observations

Analysis of the data indicated that several parametric variations
must be considered including season, geographic location, and building
material. Seasonal variation of dose determined from the TLD readings
can be seen in all types of residences. In this study, fall is defined
as October 1 through December 31, winter as January 1 through March 31,
spring as April 1 through June 30, and summer as July 1 through
September 30. The highest average TLD reading reported was in the fall,
while the lowest was in the spring (Fig. 3.1).

Predictably higher dose values were obtained in brick (stone) homes
than in houses made principally of wood (Figs. 3.2 and 3.3). Both types
of houses showed approximately the same trend of seasonal variations
including higher TLD readings in the fall and lower values in the spring.
The higher dose values in brick (stone) houses were probably caused by
the atmospheric increase of radon-emanation from the stone itself.

Three control TLDs were placed in basements located in Knoxville, Oak
Ridge, and Kingston to show an increased dose from radon emanation from

stone. An average dose equivalent rate of 11.9 % 1.4 microrems/h or

%
This can be compared to the average background dose of 78 + 3.3
millirems per year calculated from this study.

13
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ORNL-DWG. 79-14122
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Fig. 3.1. Seasonal variations of TLD readings among all test homes.

ORNL-DWG. 79-14120

BRICK & STONE RESIDENCES
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Fig. 3.2. Seasonal variations of TLD readings in brick and stone
test homes.
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ORNL-DWG. 79-14121

WOOD RESIDENCES

2 -

10 — 9.7,0-1.4

HR/hr

FALL WINTER SPRING SUMMER
1977 1978 1978 1978

Fig. 3.3. Seasonal variations of TLD readings in wood test homes.

104.6 millirems/year was obtained.* These higher dose equivalent rate
values were attributed to the enhancement of radon concentration caused
by decreased ventilation and increased stone content.

Another parameter that appeared to affect the exposure was geo-
graphic location. Table 3.1 shows the quarterly and yearly dose values
determined as a function of geographic location. All the yearly dose
rates were within two standard deviations about the mean. However, it
is interesting to note that the higher dose was not obtained in Oak
Ridge, which is in close proximity to a complex of nuclear facilities.
The average dose equivalent rate obtained from this area is 78 * 3.4 milliR
per year. This dose rate compares favorably to the average natural
background radiation in the United States of approximately 125 milliR per
year.

Other factors influencing the dose rates obtained included fluctua-
tions in temperature, humidity, ventilation rate, heating, air condition-

ing, etc. Data obtained from homes with additional insulation (compared
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to homes that were normally insulated) showed no correlation to dose
rate (Figs. 3.4 and 3.5). This result was probably caused by the
sensitivity of the test method.

At ORNL, the personnel dosimeter is located inside the security
badge. After a working day, the employee arrives at home and places his
dosimeter in the home. This study measured the natural background
radiation dose was obtained by this method of badge storage. Therefore,

only dose rates of a background level were detected by this study.

3.2 Statistical Analysis

A statistical model was developed using the data of this study to
predict dose rates in the Oak Ridge area. The variations in dose rates
at the test locations could be attributed to many factors, including
groundwater composition and geologic formations. It has been shown that
the %OK concentrations in the soil vary by a factor of 400 in the East
Tennessee area.2'

Several linear models and their ability to explain the variation in
the background radiation levels were investigated using the method of
multiple linear regression via generalized least squares. An acceptable
model was used to obtain point estimates and confidence intervals for
the mean natural background radiation levels for several of the resid-
ences studied.

In a multiple regression setting, several independent variables are
assumed to determine, to some extent, the observed value of a particular
dependent variable of interest. Here, the value of the dependent variable
(dosimeter measurement of background radiation) is assumed to depend on
values of several independent variables (housing characteristics and
quarters) that are set prior to observing the dependent variable. In a
sense, the dependent variable is a function of the independent variables,
so background radiation is a function of housing characteristics and
quarters.,

The first model was used to investigate the independent variables
of primary interest: quarter, geographic location, primary building

material, and room in which the dosimeter was kept. A linear model
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ORNL-DWG. 79-14119
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Fig. 3.4. Seasonal variations of TLD readings in test residences
with respect to insulation and/or storm windows.
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Fig. 3.5. Seasonal variations in test homes with no extra insulation.
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using only the individual variables (as opposed to cross-products of two
or more variables) was examined, and it indicated that all factors

appeared statistically significant at the 5% significance level. How- '
ever, it was of interest to investigate two measures of the adequacy of
the model: (1) the possibility of increasing the multiple correlation
coefficient and (2) the possibility of decreasing the coefficient of )
variation.

The second model invelved the addition of the two-way interaction ‘
terms (i.e., cross-products of two variables) to the main effects model.
However, the sparseness and confounding of the data as evidenced by the
zero sums of squares that resulted did not permit use of this model.

It seemed reasonable to consider the data in a hierarchical scheme
where rooms occur within house types and house types occur within towns
of residence. The third model, the corresponding hierarchical model,
was investigated and resulted in all variables testing significant and f
in an improved fit over the first model. This model was chosen as the :
most appropriate of the models studied after a few more alternatives
were investigated and eliminated. '

There was some concern over the assumption of normality of the
data. In an attempt to improve the reasonableness of the assumption
that the data were normal, the natural logarithm transformation was
applied to the dependent variable, (background radiation) and the
hierarchical model was investigated in this transformed setting. Although
the transportation substantially reduced the coefficient of variation,
the multiple correlation coefficient was only slightly improved. More-
over, there were considerable difficulties in interpreting the trans-
formed model; thus it was removed from consideration. f

The majority of the data came from Knoxville and Oak Ridge and from
one room: the bedroom. It seemed likely that reducing the investigation
to this subset might result in a more accurate model. Two house types
(stone and aluminum) had to be eliminated to have‘representation of
every house type in both towns. The hierarchical model was applied to
this subset of the data, but the result was slightly worse than when the

same model was applied to the entire data set. In addition, the natural
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logarithm transformation was applied to this subset, yet fitting the
hierarchical model to the transformed data further reduced the fit.
Counter to the prior notion, the subset models did not result in a more
conclusive model.

As a final effort, the remaining housing characteristics (heating,
air conditioning, and insulation) were added as main effects to the
hierarchical model for the subset data set to determine if they had any
effect on the level of background radiation observed. Because adding
terms to any model necessarily improves the fit, the terms should remain
in the model only if there is a substantial improvement. Heating and
air conditioning were determined to be not significant in their contribu-
tion to the model and were eliminated. The last characteristic, insula-
tion, appeared marginally significant, however the improvement in the
model was quite small. Thus the expense of collecting the insulation
data was not warranted by any sizeable increase in the accuracy of the
model.

In conclusion, the hierarchical models for either the entire data
set or the subset were the best of the models investigated as measured
by the multiple correlation coefficient and the coefficient of variation.
No significant improvement was obtained through either the addition of
terms to the model or transformation of the dependent variable. The
hierarchical model for the entire data set was somewhat better than the
same model applied to the subset of data; thus, for simplicity and com-
pleteness, the model for the entire data set was preferred. Neither
model will predict with great precision, yet they can predict approxi-
mate dose rate for the residences studied. The hierarchical model for
the entire data set yielded a multiple correlation coefficient of approxi-
mately 0.53 and reduced the coefficient of variation from 20.08 to 14.62
with all variables significant at the 0.0l level. The hierarchical
model for the subset of data yielded a multiple correlation coefficient
of approximately 0.45 and reduced the coefficient of variation from
20.18 to 15.63% with all variables significant at the 0.0l level. One
way to improve the precision of either model would be to collect data of
a quantitative nature such as indoor/outdoor temperature and add this to

the model. Unfortunately the scope of this particular study did not



21

allow for such considerations. Table B.2 of Appendix B summarizes the

models investigated.

3.2.1 Description of the hierarchical model

The model that was selected as the most appropriate in describing
natural background radiation as a function of the characteristics studied
has a hierarchical structure in that rooms occur within residences and
residences within towns. The more common matrix representation of this

linear model (rather than the subscription parameter notation) is given

by
Y=Xx3+¢

where ¥ is the vector of observed radiation levels, X is the design matrix
of ones and zeros that indicate the housing characteristics for each
observation, § is a vector of parameters or coefficients that are to be
estimated, and Z is a vector of unobservable random errors. A vector
solution to this equation is given in Appendix B, Table B.l. A descrip-
tion and example of the coding scheme and consequently the development

of the design matrix also are given in Appendix B.

3.2.2 Estimation of mean natural background radiation

If the hierarchical model is assumed to be the correct model for
the dependency of background radiation level on housing characteristics
and quarters, then the mean background radiation levels for particular
housing characteristics that occur in the data set are estimable and
invariant. Several examples of estimated mean background radiation
levels are given in Table 3.2. Similar calculations could be performed
for other housing characteristics of interest that appear in the data
set.

The confidence intervals are interpreted to mean that there is
approximately 95% confidence that the true mean background radiation
level for the particular housing configuration lies in the interval

given. The confidence intervals are of use in interpreting mean dosimeter
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Table 3.2. Estimation of mean background radiation in
bedrooms using the hierarchical model on the entire
data set for the first quarter

Point estimate of Approximate 957
Housing configuration mean background confidence interval
and location radiation level for the mean
(milliR)

Brick, Knoxville 10.5 (10.0, 11.1)
Brick, Oak Ridge 9.8 (8.8, 10.7)
Concrete, Knoxville 13.5 (12.5, 14.6)
Concrete, Oak Ridge 10.3 (9.5, 11.1)
Cemesto,?4 9.8 (9.2, 10.4)

Oak Ridge

Zpsbestos type.

readings to indicate whether the observed mean for houses of a particular
configuration is more likely from natural background radiation or from

some anomalous occurrence.
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SUMMARY

Eighty-four residences in the Oak Ridge area were used to determine
radiation exposure indoors during one year. All residences showed
seasonal variations in dose rates; the highest TLD values were reported
in the fall and lowest in the spring. Higher values were obtained from
houses principally comprised of brick (stone) compared with dose rates
obtained in wooden residences. Variances in dose values were also noted
with respect to geographic location of the test homes. An important
result of these variances showed that Oak Ridge residences, although
close to a complex of nuclear facilities, had a dose equivalent rate of
78 milliR per year. This result can be compared to the mean dose
equivalent rate from all the test residences outside of Oak Ridge which
read 79 milliR per year. Other factors, such as insulation additions
and storm windows, had no detectable variations in dose rates. A
statistical model was developed to explain the data obtained and to
predict dose rates given certain housing characteristics and geographic

locations.
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APPENDIX A

INDIVIDUAL HOUSE DATA

The following data were compiled from the participants in the study.

The following code is used in the table.

WD — Wood
BR — Brick
CM — Cemesto

CR — Concrete

AL — Aluminum or Mobile Home

I — Insulation

S — Storm Window

N — No Insulation or Storm Window

BR — Bedroom

LR — Living Room
BAS — Basement

ND — Not Determined
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APPENDIX B

SOLUTION OF THE HIERARCHICAL MODEL

In the quantitative least squares situation, the solution to the
regression equation T=X8 +°¢ is given by 5=l X'?, the normal
equations. However, in the quantitative situation, the (X'X) matrix is
singular and no inverse exists to solve the equation. To find a solution,
a generalized inverse matrix must be obtained by deleting some number of
rows of the (X'X) matrix, which is equivalent to setting some of the
parameters in the vector 3 equal to zero. The resulting estimates, say
3°, are biased and do not estimate the original parameters, however they
are the best linear unbiased estimators of some linear combination of
parameters in the model. Fortunately, the means of residences of
particular housing configurations are estimable and invariant to what-
ever solution, 3°, that is chosen.

The estimates for the hierarchical model were obtained through the
Statistical Analysis System?® and are given in Table B.1l.

Table B.1l provides the key to the coding scheme used and hence the
design matrix, X. There are 71 dummy variables in the model that are
individually coded as either one or zero. For each observation, each
dummy variable is coded as one if the observation has the corresponding
characteristic or as zero if not. For example, an observation from a
cemesto house in Oak Ridge in the bedroom in the first quarter would

have ones coded into the following dummy variables

Xy, representing the overall mean for all observations
X,, representing the first quarter

X131, representing Oak Ridge

X3p, representing cemesto houses in Oak Ridge

Xg2, representing bedrooms in cemesto houses in Oak Ridge

with zeroes assigned to the remaining 68 dummy variables. All observa-
tions were coded in the same manner, and the matrix of the resulting
coded observations is the design matrix, X. In fact, the vectors coded

. . -
in this manner are exactly the vectors q used to estimate the means.
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Table B.2 summarizes the models investigated giving several items
of information about each one. Model 3, the preferred model in this

investigation, is the hierarchical model for the entire data set.
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